All Issue

2024 Vol.44, Issue 1 Preview Page
28 February 2024. pp. 137-148
Abstract
References
1
González, J., Payán, M., Santos, J. M. R., and González-Longatt, F., A Review and Recent Developments in the Optimal Wind-Turbine Micro-Siting Problem, Renew Sustain Energy Reviews, Vol. 30, pp. 133-144, 2014, https://doi.org/10.1016/j.rser.2013.09.027. 10.1016/j.rser.2013.09.027
2
Lissaman, P. B. S., Energy Effectiveness of Arbitrary Arrays of Wind Turbines, Journal of Energy, Vol. 3, No. 6, pp. 323-328, 1979, https://doi.org/10.2514/3.62441. 10.2514/3.62441
3
Jensen, N. O., A Note on Wind Generator Interaction, Risø National Laboratory, 1983, Denmark.
4
Katic, I., Højstrup, J., and Jensen, N. O., A Simple Model for Cluster Efficiency, European Wind Energy Association Conference and Exhibition, Vol. 1, pp. 407-410, October 1986, Rome, Italy: A. Raguzzi.
5
Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., and Larsen, S., Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, Vol. 9, pp. 39-53, 2006, https://doi.org/10.1002/we.189. 10.1002/we.189
6
Larsen, G. C., A Simple Stationary Semi-Analytical Wake Model, Risø National Laboratory for Sustainable Energy, Technical University of Denmark: Roskilde, 2009, Denmark.
7
Gao, X., Yang, H., and Lu, L., Optimization of Wind Turbine Layout Position in a Wind Farm Using a Newly-Developed Two-Dimensional Wake Model, Appl Energy, Vol. 174, pp. 192-200, 2016, https://doi.org/10.1016/j.apenergy.2016.04.098. 10.1016/j.apenergy.2016.04.098
8
Ainslie, J. F., Calculating the Flowfield in the Wake of Wind Turbines, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 27, pp. 213-224, 1988, https://doi.org/10.1016/0167-6105(88)90037-2. 10.1016/0167-6105(88)90037-2
9
Schlez, W., Neubert, A., and Smith, G., New Developments in Precision Wind Farm Modelling, Deutsche Windenergie Konferenz, 2006.
10
Ott, S., Berg, J., and Nielsen, M., Linearised CFD Models for Wakes, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, 2011, Denmark.
11
Calaf, M., Meneveau, C., and Meyers, J., Large Eddy Simulation Study of Fully Developed Wind-Turbine Array Boundary Layers, Physics of Fluids, Vol. 22, No. 1, 2010, https://doi.org/10.1063/1.3291077. 10.1063/1.3291077
12
Wu, Y. T. and Porté-Agel, F., Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations, Boundary-Layer Meteorology, Vol. 138, pp. 345-366, 2011, https://doi.org/10.1007/s10546-010-9569-x. 10.1007/s10546-010-9569-x
13
Beaucage, P., Brower, M., Robinson, N., and Alonge, C., Overview of Six Commercial and Research Wake Models for Large Offshore Wind Farms, Proceedings of the European Wind Energy Associate (EWEA), Vol. 18, April 2012, Copenhagen, Denmark.
14
Barthelmie, R. J. and Jensen, L. E., Evaluation of Wind Farm Efficiency and Wind Turbine Wakes at the Nysted Offshore Wind Farm, Wind Energy, Vol. 13, No. 6, pp. 573-586, 2010, https://doi.org/10.1002/we.408. 10.1002/we.408
15
Barthelmie, R. J., Frandsen, S. T., Rathmann, O., Hansen, K., Politis, E. S., Prospathopoulos, J. M., Schepers, J. G., Rados, K., Cabezon, D., Schlez, W., Neubert, A., and Heath, M., Flow and Wakes in Large Wind Farms: Final Report for UpWind WP8, Denmark, 2011.
16
Tong, W., Chowdhury, S., and Zhang, J., Messac, A., Impact of Different Wake Models on the Estimation of Wind Farm Power Generation, 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis And Optimization Conference, p. 5430, 2012, Indianapolis, USA, https://doi.org/10.2514/6.2012-5430. 10.2514/6.2012-5430
17
Brusca, S., Lanzafame, R., Famoso, F., Galvagno, A., Messina, M., Mauro, S., and Prestipino, M., On the Wind Turbine Wake Mathematical Modelling, Energy Procedia, Vol. 148, pp. 202-209, 2018, https://doi.org/10.1016/j.egypro.2018.08.069. 10.1016/j.egypro.2018.08.069
18
Archer, C. L., Vasel-Be-Hagh, A., Yan, C., Wu, S., Pan, Y., Brodie, J. F., and Maguire, A. E., Review and Evaluation of Wake Loss Models for Wind Energy Applications, Applied Energy, Vol. 226, pp. 1187-1207, 2018, https://doi.org/10.1016/j.apenergy.2018.05.085. 10.1016/j.apenergy.2018.05.085
19
Göçmen, T., Van der Laan, P., Réthoré, P. E., Diaz, A. P., Larsen, G. C., and Ott, S., Wind Turbine Wake Models Developed at the Technical University of Denmark: A Review, Renewable and Sustainable Energy Reviews, Vol. 60 pp. 752-769, 2016, https://doi.org/10.1016/j.rser.2016.01.113. 10.1016/j.rser.2016.01.113
20
Vermeer, L. J., Sørensen, J. N., and Crespo, A., Wind Turbine Wake Aerodynamics, Progress in Aerospace Sciences, Vol. 39, pp. 467-510, 2003, https://doi.org/10.1016/S0376-0421(03)00078-2. 10.1016/S0376-0421(03)00078-2
21
Mittal, P., Kulkarni, K., and Mitra, K., A Novel Hybrid Optimization Methodology to Optimize the Total Number and Placement of Wind Turbines, Renewable Energy, Vol. 86, 2016. 10.1016/j.renene.2015.07.100
22
Pena, A., Réthoré, P. E., and van der Laan, M. P., On the Application of the Jensen Wake Model Using a Turbulence-Dependent Wake Decay Coefficient: The Sexbierum Case, Wind Energy, Vol. 19, No. 4, pp. 763-766, 2016, https://doi.org/10.1002/we.1863. 10.1002/we.1863
Information
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 44
  • No :1
  • Pages :137-148
  • Received Date : 2024-01-20
  • Revised Date : 2024-02-05
  • Accepted Date : 2024-02-06