All Issue

2021 Vol.41, Issue 3 Preview Page

Research Article

30 June 2021. pp. 11-23
Abstract
References
1
The Intergovernmental Panel on Climate Change, Climate Change 2014 Synthesis Report, 2015.
2
Vandermarcke, B., Roels, S., Standaert, P., and Wouters, P., Development of Limits for the Linear Thermal Transmittance of Thermal Bridges in Buildings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, p. 10, 2007.
3
Choi, G.-S. and Sohn, J.-Y., Thermal Performance Evaluation of Apartment Housing Using Infra-red Camera, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 22, No. 8, pp. 404-412, 2010.
4
Hans, E. and Heike, E. K., An effective Handling of Thermal Bridges in the EPBD Context, ASIEPI Project, p. 9, 2010.
5
Oh, S. M., Park, S. H., Joung, K. S., Study on the Improvement Plans of Condensation Defect Examples in Apartment Building, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 29, No. 2, p.82-88, 2017.
6
Korea Energy Agency, Energy-saving Design Standards, pp. 299-318, 2017. 10.1299/jsmedmc.2017.318
7
de Wilde, P., The Gap between Predicted and Measured Energy Performance of Buildings: A Framework for Investigation, Automation in Construction, Vol. 41, pp. 40-49, 2014. 10.1016/j.autcon.2014.02.009
8
Carslaw, H. S. and Jaeger, J. C. Conduction of Heat in Solids (second ed.), Oxford Science Publications , p. 510, 1959.
9
Asan, H. and Sancaktar, Y. S., Effects of Wall's Thermophysical Properties on Time Lag and Decrement Factor, Energy and Buildings, Vol. 28, No. 2, pp. 159-166, 1998. 10.1016/S0378-7788(98)00007-3
10
Fathipour, R. and Hadidi, A., Analytical Solution for the Study of Time Lag and Decrement Factor for Building Walls in Climate of Iran, Energy, Vol. 134, pp. 167-180, 2017. 10.1016/j.energy.2017.06.009
11
Corasaniti, S., Potenza, M., Coppa, P., and Bovesecchi, G., Comparison of Different Approaches to Evaluate the Equivalent Thermal Diffusivity of Building Walls under Dynamic Conditions, International Journal of Thermal Sciences, Vol. 150, 106232, 2020. 10.1016/j.ijthermalsci.2019.106232
12
Voltra 7.0w, https://www.physibel.be/en/, Accessed 2021. 5. 20.
13
Martin, K., Erkoreka, A., Flores, I., Odriozola, M., and Sala, J. M., Problems in the Calculation of Thermal Bridges in Dynamic Conditions, Energy and Buildings, Vol. 43, No. 2-3, pp. 529-535, 2011. 10.1016/j.enbuild.2010.10.018
14
Asdrubali, F., Baldinelli, G., and Bianchi, F., A Quantitative Methodology to Evaluate Thermal Bridges in Buildings, Applied Energy, Vol. 97, pp. 365-373, 2012. 10.1016/j.apenergy.2011.12.054
15
International Organization for Standardization, ISO 10077-1:2017 Thermal performance of windows, doors and shutters - Calculation of thermal transmittance.
16
International Organization for Standardization, ISO10211:2017 Thermal bridges in building construction - Heat flows and surface temperatures - Detailed calculations.
17
International Organization for Standardization, ISO 6946:2017 Building components and building elements - Thermal resistance and thermal transmittance - Calculation methods.
18
Li, M., Jiang, Y., and Coimbra, C. F. M., On the Determination of Atmospheric Longwave Irradiance under All-sky Conditions, Solar Energy, Vol. 144, pp. 40-48, 2017. 10.1016/j.solener.2017.01.006
Information
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 41
  • No :3
  • Pages :11-23
  • Received Date : 2021-04-07
  • Accepted Date : 2021-05-02