All Issue

2024 Vol.44, Issue 1 Preview Page
28 February 2024. pp. 59-75
Critical Data, M. I. T., Secondary Analysis of Electronic Health Records, Springer Nature, p. 427, 2016. 10.1007/978-3-319-43742-231314219
Van Buuren, S., Flexible Imputation of Missing Data, CRC press, 2018. 10.1201/9780429492259
Chen, T. and Guestrin, C., Xgboost: A Scalable Tree Boosting System, In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794, August 2016, San Francisco, CA, USA. 10.1145/2939672.2939785
Mustika, W. F., Murfi, H., and Widyaningsih, Y., Analysis Accuracy of XGboost Model for Multiclass Classification-A Case Study of Applicant Level Risk Prediction for Life Insurance, In 2019 5th International Conference on Science in Information Technology (ICSITech), IEEE, pp. 71-77, October 2019, Yogyakarta, Indonesia. 10.1109/ICSITech46713.2019.8987474
Rusdah, D. A. and Murfi, H. XGBoost in Handling Missing Values for Life Insurance Risk Prediction, SN Applied Sciences, Vol. 2, pp. 1-10, 2020. 10.1007/s42452-020-3128-y
Korea Meteorological, Open Weather Data Portal, 2023. last accessed on the 12th October 2023.
Akande, O., Li, F., and Reiter, J., An Empirical Comparison of Multiple Imputation Methods for Categorical Data, The American Statistician, Vol. 71, No. 2, pp. 162-170, 2017. 10.1080/00031305.2016.1277158
Zhang, X., Boscardin, W. J., Belin, T. R., Wan, X., He, Y., and Zhang, K., A Bayesian Method for Analyzing Combinations of Continuous, Ordinal, and Nominal Categorical Data with Missing Values, Journal of Multivariate Analysis, Vol. 135, pp. 43-58, 2015. 10.1016/j.jmva.2014.11.007
Ma, Z. and Chen, G., Bayesian Methods for Dealing with Missing Data Problems, Journal of the Korean Statistical Society, Vol. 47, pp. 297-313, 2018. 10.1016/j.jkss.2018.03.002
Dewi, K. C., Mustika, W. F., and Murfi, H., Ensemble Learning for Predicting Mortality Rates Affected by Air Quality, In Journal of Physics: Conference Series, IOP Publishing, Vol. 1192, No. 1, 012021, March 2019, Bandung, Indonesia. 10.1088/1742-6596/1192/1/012021
Kim, T., Ko, W., and Kim, J., Analysis and Impact Evaluation of Missing Data Imputation in Day-Ahead PV Generation Forecasting, Applied Sciences, Vol. 9, No. 1, 204, 2019. 10.3390/app9010204
Zhang, S., Nearest Neighbor Selection for Iteratively kNN Imputation, Journal of Systems and Software, Vol. 85, No. 11, pp. 2541-2552, 2012. 10.1016/j.jss.2012.05.073
Benesty, J., Chen, J., Huang, Y., and Cohen, I., Pearson Correlation Coefficient, Noise Reduction in Speech Processing, Springer Topics in Signal Processing, Vol. 2, pp. 1-4, 2009. 10.1007/978-3-642-00296-0_5
Abdi, H. and Williams, L. J., Principal Component Analysis, Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, No. 4, pp. 433-459, 2010. 10.1002/wics.101
Lee, K. and Lim, H., Correlation Analysis of Building Parameters According to ASHRAE Standard 90.1, Journal of Building Engineering, Vol. 82, 108130, 2023, 10.1016/j.jobe.2023.108130
Chu, H.-G., Shin, H.-S., Cho, S.-K., Yoo, Y.-S., and Park, C.-S., Sensitivity Analysis Using Explainable AI for Building Energy Use, Journal of the Architectural Institute of Korea, Vol. 38, No. 11, pp. 279-287, 2022.
Lundberg, S. M. and Lee, S. I., A Unified Approach to Interpreting Model Predictions, Advances in Neural Information Processing Systems, Vol. 30, Curran Associates, Inc., 2017.
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B., Algorithms for Hyper-Parameter Optimization, Advances in Neural Information Processing Systems, Vol. 24, Curran Associates, Inc., 2011.
ASHRAE, ASHRAE Handbook: Fundamentals 2021 SI, ASHRAE, 2021.
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 44
  • No :1
  • Pages :59-75
  • Received Date : 2023-10-22
  • Revised Date : 2023-11-23
  • Accepted Date : 2023-12-26