Research Article
IEA, Snapshot of Global PV Markets, 2025. https://iea-pvps.org/wp-content/uploads/2025/04/Snapshot-of-Global-PV-Markets_2025.pdf. last accessed on the 8th July 2025.
Tsanakas, J. A., Ha, L., and Buerhop, C., Faults and Infrared Thermographic Diagnosis in Operating c-Si Photovoltaic Modules: A Review of Research and Future Challenges, Renewable and Sustainable Energy Reviews, Vol. 62, pp. 695-709, 2016.
10.1016/j.rser.2016.04.079Kaplani, E., Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing, International Journal of Photoenergy, Vol. 2012, pp. 1-11, 2012.
10.1155/2012/396792Hong, Y. Y. and Pula, R. A., Methods of Photovoltaic Fault Detection and Classification: A Review, Energy Reports, Vol. 8, pp. 5898-5929, 2022.
10.1016/j.egyr.2022.04.043Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., and Ahmad, A., CNN based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images, Energy, Vol. 189, 116319, 2019.
10.1016/j.energy.2019.116319Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., and Pavan, A. M., A Novel Fault Diagnosis Technique for Photovoltaic Systems Based on Artificial Neural Networks, Renewable Energy, Vol. 90, pp. 501-512, 2016.
10.1016/j.renene.2016.01.036Herraiz, Á. H., Marugán, A. P., and Márquez, F. P. G., Photovoltaic Plant Condition Monitoring Using Thermal Images Analysis by Convolutional Neural Network-Based Structure, Renewable Energy, Vol. 153, pp. 334-348, 2020.
10.1016/j.renene.2020.01.148Kellil, N., Aissat, A., and Mellit, A., Fault Diagnosis of Photovoltaic Modules Using Deep Neural Networks and Infrared Images under Algerian Climatic Conditions, Energy, Vol. 263, 125902, 2023.
10.1016/j.energy.2022.125902Ebrahim, M., Al-Ayyoub, M., and Alsmirat, M. A., Will Transfer Learning Enhance ImageNet Classification Accuracy Using ImageNet Pretrained Models?, International Conference on Information and Communication Systems (ICICS), 211-216, June 2019, Irbid, Jordan, 2019.
10.1109/IACS.2019.8809114Korkmaz, D. and Acikgoz, H., An Efficient Fault Classification Method in Solar Photovoltaic Modules Using Transfer Learning and Multi-Scale Convolutional Neural Network, Engineering Applications of Artificial Intelligence, Vol. 113, 104959, 2022.
10.1016/j.engappai.2022.104959Xie, X., Lai, G., You, M., Liang, J., and Leng, B., Effective Transfer Learning of Defect Detection for Photovoltaic Module Cells in Electroluminescence Images, Solar Energy, Vol. 250, pp. 312-323, 2023.
10.1016/j.solener.2022.10.055Shou, C., Hong, L., Ding, W., Shen, Q., Zhou, W., Jiang, Y., and Zhao, C., Defect Detection with Generative Adversarial Networks for Electroluminescence Images of Solar Cells, In Proceedings of the 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 312-317, October 2020, Zhanjiang, China, 2020.
10.1109/YAC51587.2020.9337676Song, X. and Liu, Y., Defect Detection of Solar Panel Based on DenseNet Network, Industrial Engineering and Applications, Vol. 35, pp. 661-669, 2022.
10.3233/ATDE230093He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, June 2016, Las Vegas, USA, 2016.
10.1109/CVPR.2016.90Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., Going Deeper with Convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, June 2015, Boston, USA, 2015.
10.1109/CVPR.2015.7298594Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, arXiv preprint, arXiv:1602.07360, 2016.
Millendorf, M., Obropta, E., and Vadhavkar, N., Infrared Solar Module Dataset for Anomaly Detection, International Conference on Learning Representations (ICLR), 2020. https://github.com/RaptorMaps/InfraredSolarModules. last accessed on the the 8th July 2025
Buerhop-Lutz, C. J. C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., and Brabec, C. J., A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery, 35th European PV Solar Energy Conference and Exhibition, pp. 1287-1289, August 2018, Brussels, Belgium, 2018.
- Publisher :Korean Solar Energy Society
- Publisher(Ko) :한국태양에너지학회
- Journal Title :Journal of the Korean Solar Energy Society
- Journal Title(Ko) :한국태양에너지학회 논문집
- Volume : 45
- No :4
- Pages :67-79
- Received Date : 2025-07-14
- Revised Date : 2025-07-31
- Accepted Date : 2025-08-07
- DOI :https://doi.org/10.7836/kses.2025.45.4.067


Journal of the Korean Solar Energy Society







