All Issue

2025 Vol.45, Issue 4 Preview Page

Research Article

30 August 2025. pp. 43-56
Abstract
References
1

Kang, J. and Lee, J., Issue Report–2024 Global Solar Photovoltaic Market and Investment Trends, The Export-Import Bank of Korea, Seoul, Republic of Korea, p.5, 2024.

2

Jeong, H.-Y., Hong, S.-H., Jeon, J.-S., Im, S.-C., Kim, J.-C., and Park, C.-Y., A Research for Imputation Method of Photovoltaic Power Missing Data to Apply Time Series Models, Journal of the Korea Multimedia Society, Vol. 24, No. 9, pp. 1251-1260, 2021.

3

Lee, J.-H., Kim, W.-H., Kang, T.-Y., and Park, T.-J., Optimal Operation of Energy Storage Systems Based on Artificial Intelligence, Journal of the Korean Solar Energy Society, Vol. 42, No. 1, pp. 155-175, 2022.

10.7836/kses.2022.42.1.155
4

Fan, Y., Yu, X., Wieser, R., Meakin, D., Shaton, A., Jaubert, J.-N., Flottemesch, R., Howell, M., Braid, J., Bruckman, L. S., French, R., and Wu, Y., Spatio-Temporal Denoising Graph Autoencoders with Data Augmentation for Photovoltaic Time-series Data Imputation, arXiv preprint, 2023.

10.1145/3588730
5

Wen, S., Yang, G., Xu, D., and Guerrero, J. M., Online Fault Diagnosis for PV Systems Based on Artificial Neural Networks, IEEE Transactions on Sustainable Energy, Vol. 8, No. 4, pp. 1715-1724, 2017.

6

Triki-Lahiani, A., Bennani-Ben Abdelghani, A., and Slama-Belkhodja, I., Fault Detection and Monitoring Systems for Photovoltaic Installations: A Review, Renewable and Sustainable Energy Reviews, Vol. 82, Part 3, pp. 2680-2692, 2018.

10.1016/j.rser.2017.09.101
7

Kim, T., Ko, W., and Kim, J., Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV Generation Forecasting, Applied Sciences, Vol. 9, No. 1, 204, 2019.

10.3390/app9010204
8

Branco, P., Gonçalves, F., and Costa, A. C., Tailored Algorithms for Anomaly Detection in Photovoltaic Systems, Energies, Vol. 13, Article 225, 2020.

10.3390/en13010225
9

Chouder, A., Silvestre, S., Taghezouit, B., and Karatepe, E., Monitoring, Modelling and Simulation of PV Systems Using LabVIEW, Solar Energy, Vol. 91, pp. 337-349, 2013.

10.1016/j.solener.2012.09.016
10

Mohamed, I. and Fathy, A., Fault Detection of the Photovoltaic System by Artificial Neural Networks, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 1-10, 2022.

Information
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 45
  • No :4
  • Pages :43-56
  • Received Date : 2025-07-15
  • Revised Date : 2025-08-04
  • Accepted Date : 2025-08-04