All Issue

2023 Vol.43, Issue 5 Preview Page

Research Article

30 October 2023. pp. 43-59
Ferreira, P. M., Ruano, A. E., Silva, S., and Conceicao, E. Z. E., Neural Networks Based Predictive Control for Thermal Comfort and Energy Savings in Public Buildings, Energy and Buildings, Vol. 55, pp. 238-251, 2012. 10.1016/j.enbuild.2012.08.002
Huang, H., Chen, L., and Hu, E., A New Model Predictive Control Scheme for Energy and Cost Savings in Commercial Buildings: An Airport Terminal Building Case Study, Building and Environment, Vol. 89, pp. 203-216, 2015. 10.1016/j.buildenv.2015.01.037
Kusiak, A., Li, M., and Tang, F., Modeling and Optimization of HVAC Energy Consumption, Applied Energy, Vol. 87, No. 10, pp. 3092-3102, 2010. 10.1016/j.apenergy.2010.04.008
Nagpal, H., Avramidis, I. I., Capitanescu, F., and Heiselberg, P., Optimal Energy Management in Smart Sustainable Buildings-A Chance-constrained Model Predictive Control Approach, Energy and Buildings, Vol. 248, 111163, 2021. 10.1016/j.enbuild.2021.111163
Nguyen, T. T., Yoo, H. J., and Kim, H. M., Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid, Energies, Vol. 10, No. 4, 417, 2017. 10.3390/en10040417
Afram, A. and Janabi-Sharifi, F., Theory and Applications of HVAC Control Systems? A Review of Model Predictive Control (MPC), Building and Environment, Vol. 72, pp. 343-355, 2014. 10.1016/j.buildenv.2013.11.016
Khanmirza, E., Esmaeilzadeh, A., and Markazi, A. H. D., Predictive Control of a Building Hybrid Heating System for Energy Cost Reduction, Applied Soft Computing, Vol. 46, pp. 407-423, 2016. 10.1016/j.asoc.2016.05.005
Jeon, B. K., Kim, E. J., Shin, Y., and Lee, K. H., Learning-Based Predictive Building Energy Model Using Weather Forecasts for Optimal Control of Domestic Energy Systems, Sustainability, Vol. 11, No. 1, 147, 2018. 10.3390/su11010147
Korea Meteorological administration, last accessed on the 17th September 2023.
National meteorological service for the UK, last accessed on the 17th September 2023.
The National weather service U.S., last accessed on the 17th September 2023.
National Meteorological service for Canada, last accessed on the 17th September 2023.
Lago, J., De Ridder, F., and De Schutter, B., Forecasting Spot Electricity Prices: Deep Learning Approaches and Empirical Comparison of Traditional Algorithms, Applied Energy, Vol. 221, pp. 386-405, 2018. 10.1016/j.apenergy.2018.02.069
Jiang, Y., Computation of Monthly Mean Daily Global Solar Radiation in China Using Artificial Neural Networks and Comparison with Other Empirical Models, Energy, Vol. 34, No. 9, pp. 1276-1283, 2009. 10.1016/
Sharma, V., Yang, D., Walsh, W., and Reindl, T., Short Term Solar Irradiance Forecasting Using a Mixed Wavelet Neural Network, Renewable Energy, Vol. 90, pp. 481-492, 2016. 10.1016/j.renene.2016.01.020
Kemmoku, Y., Orita, S., Nakagawa, S., and Sakakibara, T., Daily Insolation Forecasting Using a Multi-stage Neural Network, Solar Energy, Vol. 66, No. 3, pp. 193-199, 1999. 10.1016/S0038-092X(99)00017-1
Ahmad, A., Anderson, T. N., and Lie, T. T., Hourly Global Solar Irradiation Forecasting for New Zealand, Solar Energy, Vol. 122, pp. 1398-1408, 2015. 10.1016/j.solener.2015.10.055
Benmouiza, K. and Cheknane, A., Forecasting Hourly Global Solar Radiation Using Hybrid K-means and Nonlinear Autoregressive Neural Network Models, Energy Conversion and Management, Vol. 75, pp. 561-569, 2013. 10.1016/j.enconman.2013.07.003
Li, C., Tang, G., Xue, X., Chen, X., Wang, R., and Zhang, C., B27:B146The Short-term Interval Prediction of Wind Power Using the Deep Learning Model with Gradient Descend Optimization, Renew Energy, Vol. 155, 197e211, 2020. 10.1016/j.renene.2020.03.098
Hochreiter, S. and Schmidhuber, J., Long Short-Term Memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 1997. 10.1162/neco.1997.9.8.17359377276
Qing, X. and Niu, Y. Hourly Day-ahead Solar Irradiance Prediction Using Weather Forecasts by LSTM, Energy, Vol. 148, pp. 461-468, 2018. 10.1016/
He, H., Lu, N., Jie, Y., Chen, B., and Jiao, R., Probabilistic Solar Irradiance Forecasting via a Deep Learning-Based Hybrid Approach, IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, pp. 1604-1612, 2020. 10.1002/tee.23231
Jeon, B. K. and Kim, E. J., Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data, Energies, Vol. 13, No. 20, 5258, 2020. 10.3390/en13205258
Rajagukguk, R. A., Ramadhan, R. A., and Lee, H. J., A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power, Energies, Vol. 13, No. 24, 6623, 2020. 10.3390/en13246623
Kulshrestha A, Krishnaswamy, V., and Sharma, M., Bayesian BILSTM Approach for Tourism Demand Forecasting, Annals of Tourism Research, Vol. 83, 102925, 2020. 10.1016/j.annals.2020.102925
Shahid, F., Zameer, A., and Muneeb, M., Predictions for COVID-19 with Deep Learning Models of LSTM, GRU and Bi-LSTM, Chaos, Solitons & Fractals, Vol. 140, 110212, 2020. 10.1016/j.chaos.2020.11021232839642PMC7437542
Zhang, B., Zhang, H., Zhao, G., Lian, J., Constructing a PM2. 5 Concentration Prediction Model by Combining Auto-Encoder with Bi-LSTM Neural Networks, Environ Model Software, Vol. 124, 104600, 2020. 10.1016/j.envsoft.2019.104600
Cheng, H., Ding, X., Zhou, W., and Ding, R., A Hybrid Electricity Price Forecasting Model with Bayesian Optimization for German Energy Exchange, International Journal of Electrical Power & Energy Systems, Vol. 110, 653e66, 2019. 10.1016/j.ijepes.2019.03.056
Liu, H. and Chen, C., Multi-objective Data-ensemble wind Speed Forecasting Model with Stacked Sparse Autoencoder and Adaptive Decomposition-based Error Correction, Applied Energy, Vol. 254, 113686, 2019. 10.1016/j.apenergy.2019.113686
Peng, T., Zhang, C., Zhou, J., and Nazir, M. S., An Integrated Framework of Bi-directional Long-Short Term Memory (BiLSTM) Based on Sine Cosine Algorithm for Hourly Solar Radiation Forecasting, Energy, Vol. 221, 119887, 2021. 10.1016/
Jaihuni, M., Basak, J. K., Khan, F., Okyere, F. G., Sihalath, T., Bhujel, A., Park, J.H., Lee, D.H., and Kim, H. T., A Novel Recurrent Neural Network Approach in Forecasting Short Term Solar Irradiance, ISA Transactions, Vol. 121, pp. 63-74, 2022. 10.1016/j.isatra.2021.03.04333840460
Graves, A., Mohamed, A.-r. , and Hinton, G., Speech Recognition with Deep Recurrent Neural Networks, In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, pp. 6645-6649, March 2013, Vancouver, Canada. 10.1109/ICASSP.2013.6638947
Fischer, T. and Krauss, C., Deep Learning with Long Short-term Memory Networks for Financial Market Predictions, European Journal of Operational Research, Vol. 270, No. 2, pp. 654-669, 2018. 10.1016/j.ejor.2017.11.054
Salman, A. G., Heryadi, Y., Abdurahman, E., and Suparta, W., Single Layer & Multi-layer Long Short-term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting, Procedia Computer Science, Vol. 135, pp. 89-98, 2018. 10.1016/j.procs.2018.08.153
Sun, Q., Jankovic, M. V., Bally, L., and Mougiakakou, S. G., Predicting Blood Glucose with an LSTM and Bi-LSTM Based Deep Neural Network, In 2018 14th Symposium on Neural Networks and Applications (NEUREL), IEEE, pp. 1-5, November 2018, Belgrade, Serbia. 10.1109/NEUREL.2018.8586990
Huang, Z., Xu, W., and Yu, K., Bidirectional LSTM-CRF Models for Sequence Tagging, arXiv preprint arXiv:1508.01991, 2015.
Xu, B., Shi, X., Zhao, Z., and Zheng, W. Leveraging Biomedical Resources in Bi-LSTM for Drug-Drug Interaction Extraction, IEEE Access, Vol. 6, pp. 33432-33439, 2018. 10.1109/ACCESS.2018.2845840
MathWorks Inc., MATLAB Documentation, MathWorks, 2018.
Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980, 2014.
Basha, S. S., Dubey, S. R., Pulabaigari, V., and Mukherjee, S., Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification, Neurocomputing, Vol. 378, pp. 112-119, 2020. 10.1016/j.neucom.2019.10.008
ISO, Solar Energy-specification and Classification of Instruments for Measuring Hemispherical Solar and Direct Solar Radiation, 1990.
Husein, M. and Chung, I. Y., Day-ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-term Memory Recurrent Neural Network: A Deep Learning Approach, Energies, Vol. 12, No. 10, 1856, 2019. 10.3390/en12101856
Aslam, M., Lee, J. M., Kim, H. S., Lee, S. J., and Hong, S., Deep Learning Models for Long-term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study, Energies, Vol. 13, No. 1, 147, 2019. 10.3390/en13010147
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 43
  • No :5
  • Pages :43-59
  • Received Date : 2023-03-30
  • Revised Date : 2023-08-03
  • Accepted Date : 2023-10-10