All Issue

2021 Vol.41, Issue 4 Preview Page

Article

August 2021. pp. 115-129
Abstract
References
1
De Miguel, A. and Bilbao, J., Test Reference Year Generation from Meteorological and Simulated Solar Radiation Data, Solar Energy, Vol. 78, No. 6, pp. 695-703, 2005. 10.1016/j.solener.2004.09.015
2
Crawley, D. B., Which Weather Data Should You Use for Energy Simulations of Commercial Buildings?, Transactions-American Society of Heating Refrigerating and Air Conditioning Engineers, 104, pp. 498-515, 1998.
3
Lund, H. and Eidorff, S., Selection Methods for Production of Test Reference Years, Report no EUR 7306 EN. - Tech. Univ. Denmark, Dept. of Buildings and Energy, 1985.
4
Hall, I., Prairie, R., Anderson, H., and Boes, E., Generation of Typical Meteorological Years for 26 SOLMET Stations, Rapport technique SAND78-1601, - Sandia National Lab., Albuquerque, 1978.
5
Moazami, A., Nik, V. M., Carlucci, S., and Geving, S., Impacts of Future Weather Data Typology on Building Energy Performance-Investigating Long-term Patterns of Climate Change and Extreme Weather Conditions, Applied Energy, Vol. 238, pp. 696-720, 2019. 10.1016/j.apenergy.2019.01.085
6
Cui, Y., Yan, D., Hong, T., Xiao, C., Luo, X., and Zhang, Q., Comparison of Typical Year and Multiyear Building Simulations Using a 55-year Actual Weather Dataset from China, Applied Energy, Vol. 195, pp. 890-904, 2017. 10.1016/j.apenergy.2017.03.113
7
Bre, F. and Fachinotti, V. D., Generation of Typical Meteorological Years for the Argentine Littoral Region, Energy and Buildings, Vol. 129, pp. 432-444, 2016. 10.1016/j.enbuild.2016.08.006
8
Ho, C. K., Khalsa, S. S., and Kolb, G. J., Methods for Probabilistic Modeling of Concentrating Solar Power Plants, Solar Energy, Vol. 85, No. 4, pp. 669-675, 2011. 10.1016/j.solener.2010.05.004
9
Nelken, K. and Zmudzka, E., TMY Versus Multi-year Time Series of Meteorological Conditions for the Characterization of Central Poland’s Suitability for Photovoltaics, Meteorologische Zeitschrift, Vol. 26, No. 1, pp. 21-31, 2016. 10.1127/metz/2016/0755
10
Khosravi, A., Nahavandi, S., and Creighton, D., Prediction Intervals for Short-term Wind Farm Power Generation Forecasts, IEEE Transactions on Sustainable Energy, Vol. 4, No. 3, pp. 602-610, 2013. 10.1109/TSTE.2012.2232944
11
Chu, Y. and Coimbra, C.F., Short-term Probabilistic Forecasts for Direct Normal Irradiance, Renewable Energy, 101, pp. 526-536, 2017. 10.1016/j.renene.2016.09.012
12
Hu, Y .M., Liang, Z. M., Liu, Y. W., Wang, J., Yao, L., and Ning, Y., Uncertainty Analysis of SPI Calculation and Drought Assessment Based on the Application of Bootstrap, International Journal of Climatology, Vol. 35, No. 8, pp. 1847-1857, 2015. 10.1002/joc.4091
13
Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M. and Fagbenle, R. O., Generation of a Typical Meteorological Year for North-east, Nigeria, Applied Energy, Vol. 112, pp. 152-159, 2013. 10.1016/j.apenergy.2013.05.072
14
Realpe, A., Vernay, C., Pitaval, S., Lenoir, C., and Blanc, P., Benchmarking of Five Typical Meteorological Year Datasets Dedicated to Concentrated-PV Systems, Energy Procedia, Vol. 97, pp.108-115, 2016. 10.1016/j.egypro.2016.10.031
15
Nelken, K. and Zmudzka, E., TMY Versus Multi-year Time Series of Meteorological Conditions for the Characterization of Central Poland’s Suitability for Photovoltaics, Meteorologische Zeitschrift, Vol. 26, No. 1, pp. 21-31, 2016. 10.1127/metz/2016/0755
16
Abreu, E. F., Canhoto, P., Prior, V., and Melicio, R., Solar Resource Assessment through Long-term Statistical Analysis and Typical Data Generation with Different Time Resolutions Using GHI Measurements, Renewable Energy, Vol. 127, pp. 398-411, 2018. 10.1016/j.renene.2018.04.068
17
Moreno-Tejera, S., Silva-Perez, M. A., Lillo-Bravo, I., and Ramírez-Santigosa, L., Solar Resource Assessment in Seville, Spain, Statistical Characterisation of Solar Radiation at Different Time Resolutions, Sol. Energy, Vol. 132, 430e441, 2016. 10.1016/j.solener.2016.03.032
18
Carigiet, F., Baumgartner, F., Sutterlueti, J., Allet, N., Pezzotti, M., and Haller, J., Verification of Measured PV Energy Yield Versus Forecast and Loss Analysis, In 28th European PV Solar Energy Conference, October 2013 .
19
Rostron, P. D., Fearn, T., and Ramsey, M. H., Confidence Intervals for Robust Estimates of Measurement Uncertainty, Accreditation and Quality Assurance, pp. 1-13, 2020. 10.1007/s00769-021-01457-9
20
Tsamardinos, I., Greasidou, E., and Borboudakis, G., Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-validation, Machine Learning, Vol. 107, No. 12, pp. 1895-1922, 2018. 10.1007/s10994-018-5714-430393425PMC6191021
21
Ahn, H., Rim, D., Pavlak, G. S., and Freihaut, J. D., Uncertainty Analysis of Energy and Economic Performances of Hybrid Solar Photovoltaic and Combined Cooling, Heating, and Power (CCHP+ PV) Systems Using a Monte-Carlo Method, Applied Energy, Vol. 255, 113753, 2019. 10.1016/j.apenergy.2019.113753
22
Khosravi, A., Nahavandi, S., and Creighton, D., Prediction Intervals for Short-term Wind Farm Power Generation Forecasts, IEEE Transactions on Sustainable Energy, Vol. 4, No. 3, pp. 602-610, 2013. 10.1109/TSTE.2012.2232944
23
Jiang, Y., Generation of Typical Meteorological Year for Different Climates of China, Energy, Vol. 35, No. 5, pp. 1946-1953, 2010. 10.1016/j.energy.2010.01.009
24
Chan, A. L. S., Generation of Typical Meteorological Years Using Genetic Algorithm for Different Energy Systems, Renewable Energy, Vol. 90, pp. 1-13. 10.1016/j.renene.2015.12.052
25
Pattarapanitchai, S., Tohsing, K., Pankaew, P., and Janjai, S., Generation of Typical Meteorological Year Datasets for 20 Stations in Thailand, In 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) (pp. 1-6), IEEE, March 2014.
Information
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 41
  • No :4
  • Pages :115-129
  • Received Date :2021. 04. 07
  • Revised Date :2021. 06. 01
  • Accepted Date : 2021. 06. 07